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ABSTRACT 

Given a non-empty graph G = (V, E) of order n and size ra, with some property 

P, we may ask whether there exists a sequence of graphs constructed by the sequential 

removal of edges ei, e2,..., em, with the property that if Go = G then (1) Gi is obtained 

from Gi-i by deletion of exactly one edge and (2) Gi has property P for 1 < i < m. 

We refer to such a sequence as an edge annihilation sequence. If G is chordal, strongly 

chordal, split, threshold, interval or unit interval, then we show that there exists an 

edge annihilation sequence for G. Algorithms and necessary vertex orderings are 

given for the construction of edge annihilation sequences for the above mentioned 

classes of graphs. We know that for G^n\ the set of all labeled graphs G = (V, E) of 

order n, (G, <) is a partially ordered set (poset) under edge set inclusion. Using edge 

annihilation sequences and edge completion sequences, we discuss the construction 

of a chain of graphs in G(n)with property P. We show that within G(n), every graph 

with property P lies on at least one chain of graphs with property P. 
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I. INTRODUCTION 

A.     GENERAL GRAPH OVERVIEW 

A graph G is an ordered pair G = (V, E), where V is a finite set of elements 

called vertices and E is a set of 2-element subsets of V, called edges. The order of 

G is |V|, the number of vertices in G, while the size of G is \E\ , the number of 

edges in G. For distinct x, y 6 V forming an edge in E, we say {x, y} € E, or even 

more simply xy e E. If x — y, xy is a loop. Graphs for which edges have direction 

associated with them are directed graphs, or digraphs (see Figure 1). We will assume 

that all graphs are undirected and without loops, and that between any two vertices 

there can exist at most one edge (see Figure 2). 

G: 

*    3 

?    2 

Figure 1. A graph G and a digraph D. 

G: H 

Figure 2. Graph G has a loop from vertex a to itself. Graph H has multiple edges 
between vertices b and c. 

A vertex x is said to be adjacent to a vertex y if xy € E. If e = xy is an edge 

between x and y, then x and y are incident to e, and e is incident to both x and y. 



The degree of a vertex is the number of edges incident to it. Given a graph G, the 

collection of all vertices adjacent to some vertex x is the open neighborhood, NG(x), 

of x. The closed neighborhood of x, NG[x], is given by NG[x] = {x} U Na(x). 

The sequence of vertices (v0,Vi,v2, ...vn) forms a path if ViVi+l e E for i = 

0, ...7i - 1. The /en^/i of such a path from v0 to ?;n in G is n, the number of edges 

in the path. If all the vertices in the path are distinct then it is a simple path. 

The distance between two distinct vertices of a connected graph is the length of the 

shortest path between the vertices. A path for which v0 •= vn while all other vertices 

are distinct is called a cycle. A cycle made up of k edges is a k - cycle. A graph that 

contains a path between every two vertices is a connected graph. A vertex that is not 

adjacent to any other vertex is an isolated vertex. 

For a graph G = {V, E), any graph G" = (V, E') is said to be a subgraph of 

G, denoted G' <G,ifV'QV and E C E. If G' is a subgraph of G, then G is a 

supergraph of G'. An induced subgraph of G = (V, E) is a subgraph G" = (V',E') 

where V C V and E' consists of those edges in E that are incident only to vertices 

in V (see Figure 3). If G" = (V': E') is a subgraph of G = (V, E) and V = V, then 

G' is a spanning subgraph of G. For any graph G = (V..E), the complement of G 

is Gc = {V,EC), where £c = {a;j/|a:,^ € V and rcy g ^} (see Figure 4). The join, 

G + {u}, is the graph obtained by adding all edges between the vertices of G and v. 

Two graphs, Gx and G2; are said to be isomorphic if there is a one-to-one and onto 

mapping / : V(Gi) -* V{G2) such that vertices a,b € K(d) are adjacent only if 

vertices f(a),f(b) e G2 are adjacent. 

, 1 

B : 

3    _ 

G: 

Figure 3. ß is a subgraph of G and D. G is an induced subgraph of D. 



B : 

Figure 4. C is the complement of B. 

A set of vertices that are pairwise adjacent induces a clique. A maximal clique 

in G is one which is contained in no larger clique in G. A maximum, clique is a clique 

of maximum cardinality. The clique number of G, denoted UJ{G), is the number of 

vertices in a maximum clique of G. On the other hand, an independent set is a vertex 

set whose elements are pairwise nonadjacent. The stability number of G, denoted 

a(G), is the number of vertices in a largest independent set in G (see Figure 5). A 

vertex u; is simplicial in G if N(vi) is a clique. 

Figure 5. The unique maximum clique in G is the subgraph induced by {a, b, d, /}, 
giving u)(G) = 4. Maximal cliques are the subgraphs induced by {b, c, d}, {d,e,f}, 
and {a, b, d, /}. The largest independent set is {a, c, e}, giving a(G) = 3. 

An n-coloring of a graph G is a mapping / : V(G) —> {1,2,..., n} in such a 

way that no vertex is adjacent to a vertex of the same color. Determining the existence 

of an n-coloring of G can be viewed as the problem of partitioning the vertices of G 

into independent sets. The chromatic number of G, x{G), is the smallest positive 

integer n for which there exists an n-coloring of G.   A clique cover of size k for 



G = (V,E) is a partition of V into k cliques.   The clique cover number, k(G), is 

defined as the size of the smallest possible clique cover for a graph G. 

It is important to note that certain properties of graphs are hereditary, in the 

sense that if a graph G has a certain property P, then every induced subgraph of 

G also has property P. A complete graph is a graph for which all vertices in V are 

pairwise adjacent. A complete graph on n vertices is a clique and will be referred to as 

Kn. Completeness is a hereditary property. A component of a graph is a maximally 

connected subgraph of G. A bipartite graph is a graph G = (V, E) for which V can be 

partitioned into two independent sets, X and Y. It is common to write G = (X, Y, E) 

for a bipartite graph G to emphasize the bipartition of V. Bipartiteness is a hereditary' 

property. 

A graph containing no cycles is a forest. A connected forest is a tree (see 

Figure 6) . Equivalently, each component in a forest is a tree, in keeping, with non- 

graph theoretical usage of these terms. It is not hard to show that if x, y are distinct 

vertices in a tree T, then T contains a unique x, y path. If G = (V, E) and there 

exists a tree T = (V, E'), such that T < G, then T is a spanning tree of G. If G is 

connected, then G has at least one spanning tree. A rooted tree is a tree in which 

some vertex is considered the root of the tree. The level, l(v), of a vertex v in a rooted 

tree is the number of edges on the unique path from v to the root. If edge uv exists, 

and l(u) < l(v), then v is the son of u. If there exists a path {vx,v2,..., vs^,vs) such 

that l(vi) < l(v2) < ... < l(vs-i) < l(vs), then vx is a descendent oivs. If every vertex 

in a tree has either k sons or no sons, then the tree is a k-ary tree. A specific instance 

of a &-ary tree which finds wide application is a binary tree, for which k = 2. 

If the graph G ={V,E) contains a cycle vu ..., vt, vx, and there exist two non- 

consecutive vertices a, b in the cycle such that edge ab e E , then edge ab is a chord. 

A chordal graph (also known as triangulated, rigid circuit, monotone transitive, or 

perfect elimination graph) has no induced A;-cycles for k greater than three. Equiv- 

alently, a chordal graph contains no cycle of length greater than three that does not 



F: T : 

Figure 6. A forest F and a tree T. 

contain a chord. The property of being chordal is hereditary. From Dirac [Ref. 1], 

we know that every chordal graph G has a simplicial vertex, and, if G is not a clique, 

we know it has two non-adjacent simplicial vertices. 

Most of the graphs discussed in this thesis are chordal. We reason we focus 

on them because, for many problems, there are highly efficient algorithms for chordal 

graphs which do not work for non-chordal graphs. The complement of a chorda! 

graph is a cochordal graph. 

A strongly chordal graph is a graph for which every induced subgraph has a 

simple vertex. A vertex v is simple if all vertices in the closed neighborhood of v are 

pairwise compatible (see Figure 7). Two vertices u and v are said to be compatible if 

N[u] C N[v] or vice versa. Every strongly chordal graph is also a chordal graph and 

every induced subgraph of a strongly chordal graph is itself strongly chordal. 

G: 

2 

Figure 7. Vertex 1 is simple in G, but not in D. 

A transitive orientation of a graph G is an assignment of a direction to each 



edge in G so that if (a, 6), (b, c) € E, then (a, c) e E. If a graph can be given a transi- 

tive orientation, then it is transitively orientable and is by definition a comparability 

graph. A cocomparability graph is the complement of a comparability graph. A graph 

G = (V, E) is a split graph if V can be partitioned into an independent set and a 

clique. A split graph is both a chordal and a cochordal graph. It is interesting to 

note that the complement of a split graph is also a split graph. 

An intersection graph G = (V,E) is constructed by letting V be a family of 

non-empty sets, and xy <E E whenever sets x and y have at least one element in 

common. Marczewski [Ref. 2] shows that every graph arises as the intersection graph 

of some family of sets; this is not by itself interesting. So we look for classes of graphs 

that contain intersection graphs of special families of sets. One such class of graphs is 

the class of interval graphs. An interval graph G is the intersection graph of a family 

of intervals on a linearly ordered set such as the real numbers. An interval graph is 

chordal and its complement is a comparability graph. If the intervals of G are all of 

unit length, then G is a special class of interval graph called a unit interval graph. 

Interval graphs are both chordal and cocomparability graphs. The property of being 

interval or unit interval is hereditary. 

Permutation graphs can be defined using the concept of inversion. Let n be a 

permutation of the sequence (1,2, ...,n) so that (TT
1
),,- = TT/'gives the position in n 

of the jth item in the sequence. An inversion is a pair {i, j} e V such that i < j but 

-Ki1 > Kjl. Then the permutation graph of ir is G(ir) = (V, E) where V = {1, 2,..., n} 

and E = (ij\{i,j}is an inversion in TT). A permutation graph is both a comparability 

and a cocomparability graph. 

The last class of graphs we want to describe in this thesis is the class of 

threshold graphs. One way to characterize a threshold graph is based on a degree 

partition of its vertices. Let 0 < dx < ... < dm be the degrees of non-isolated vertices 

in G. Define d0 = 0. Let Du 0 < i < m, contain all vertices of degree d{\ the only 

possible empty set is D0. Here we will use the convention that for two sets X,Y C Z, 



if XUY = Z and XnY = 0, then Z = X + ¥: Thus for a threshold graph G = {V, E), 

V = D0+Di + ...+Dm is the degree partition of G. As shown by Chvatal and Hammer 

[Ref. 3], G = (V,E) is a threshold graph if and only if E = (xy\x E Di, y 6 Dj, 

i + 3 > m) • Every threshold graph is also a split graph, permutation graph, and an 

interval graph. It is interesting to note that the complement of a threshold graph is 

also a threshold graph. See Figure 8 for a visual representation of the relationships 

of the above mentioned classes of graphs.   

Cochordal Chordal Cocomparability Comparability 

Split     Strongly Chordal        Interval Permutation 

Unit Interval Threshold 

Figure 8. Relationships of various classes of graphs. 

B.     ALGORITHMS 

An algorithm is a step-by-step procedure to solve an instance of a problem of 

a specified type. Examples of graph problems include finding the shortest path from 

one vertex to another, constructing a spanning tree of least weight, or determining a 

specified labeling of the vertices. Any algorithm can be classified by its computational 

complexity, that is, an estimate of the computer time and/or memory required to solve 

a problem instance of specified size. It is desired that the computational complexity 

be given in terms of the size of the input problem. For graphs, this is generally a 

function of the size or order of the graph. 



One way to characterize the time taken to run an algorithm is to use the "Big 

0" notation. The characterization involves a non-negative real number c, a function 

/, and a sufficiently large positive integer n which is considered the input size of the 

problem instance. An algorithm is said to run in 0(f(n)) time if the time taken to 

solve a given problem is at most cf(n). Such a characterization of an algorithm gives 

a worst case upper bound on time required to solve the problem. If f(n) is polynomial 

in the parameters of the input problem, then the algorithm is commonly considered 

"good." 

A problem that can be solved by an algorithm whose complexity is polynomial 

in the input parameters is said to be in the class P. A problem for which there is a non- 

deterministic algorithm (a purely theoretical algorithm that can test all configurations 

of a problem instance simultaneously) whose complexity is polynomial in the input 

parameters is said to be in the class NP. A problem is said to be NP-hard if it can be 

shown that a deterministic polynomial solution for the problem would indicate there 

are polynomial solutions for every problem in NP. An NP-hard problem that lies in 

NP is said to be NP-complete. An example of an NP-complete problem is determining 

whether a graph G has a hamiltonian path, that is, a path which uses each vertex in 

G once and only once. 

C.     PERFECT GRAPHS 

For any graph G, u(G) is the size of the maximum clique in G. Since it takes 

u){G) colors to color that maximum clique, we know that it takes at least u(G) colors 

to color G. So, for any graph G, u(G) < x(G), that is, the chromatic number of G 

is at least as large as its largest clique. Recall also that «(G), the stability number 

of G, gives the number of vertices in the largest independent set in G. By definition 

of an independent set, we know that no two vertices in an independent set can be in 

the same clique. As a result, we know that it takes at least «(G) cliques to cover G, 

that is, «(G) < k(G). 



Suppose we consider all graphs H for which co(H) = x(H) and <*(H) = &(#). 

In fact, if we further specify that the above conditions must hold for all induced sub- 

graphs of H, then we have defined the class of perfect graphs. Many classes of graphs, 

including chordal, cochordal, comparability, cocomparability, strongly chordal, split, 

interval, unit interval, permutation, threshold and bipartite graphs, are perfect graphs. 

Perfect graphs are of particular interest since they often have desirable algorithmic 

qualities. The well known Perfect Graph Theorem is given below. 

Theorem 1.1 The Perfect Graph Theorem (Loväsz). For an undirected 

graph G — (V, E), the following statements are equivalent: 

Px: u}(G(A)) = x(G(A)) for all A C V, 

P2: n(G{A)) = k(G(A)) for all A C V, 

P3: uj{G{A))a{G{A)) > \A\ for all A C V. 

In a work published in 1959, Berge [Ref. 4] conjectured that Px was equivalent 

to P2. In 1972, Loväsz [Ref. 5] proved Px and P2 were equivalent, and then showed 

Pz was also an equivalent condition. A proof is given by Golumbic [Ref. 6]. An 

immediate corollary, which is itself sometimes given as the perfect graph theorem, is 

given below. 

Corollary 1.1. G is perfect if and only if the complement of G is perfect. 

Chordal graphs have played a key role in the development of the theory of 

perfect graphs. That chordal graphs satisfy both Px and P2 helped inspire the conjec- 

ture that Pi and P2 were equivalent. Since chordal graphs are perfect, it follows that 

strongly chordal, split, threshold, interval and unit interval graphs are also perfect. 

D.     GRAPH  COMPLETION AND ANNIHILATION SE- 
QUENCES 

An area of graph theory which has been well-studied (see Carey and Johnson 

[Ref.  7] for an overview) is the graph completion problem: Given a positive integer 

k and a graph G — (V, E) that does not have property P, can at most k edges be 



added to G to obtain a graph that does have property P? A similar yet distinct 

problem is the conditional graph completion problem: Given a positive integer k and 

a graph G = (V, E) that has property P, is it possible to add one edge at a time 

(up to k) to G so that each succeeding graph has property P? More specifically, the 

conditional graph completion problem consists of determining whether a sequence of 

graphs G0,Gi,...,Gk can be constructed such that G0 = G and Gk is a complete 

graph on \V\ vertices. A graph which meets these conditions is P-computable. The 

sequence of graphs is referred to as a F'-completion sequence. In this paper, when no 

ambiguity exists, we will simply refer to such a sequence as a completion sequence. If 

all graphs with property P are P-completable, then that class is said to be a condi- 

tional completion class. Since this thesis will only deal with conditional completion 

classes, we will use the term completion class when no possible ambiguity exists. 

A question similar to the conditional graph completion problem is one we will 

refer to as the graph annihilation problem. The graph annihilation problem asks the 

following question: Given a graph G = (V, E), of order n and size rn, with property 

P, is there a sequence of edges ei,e2,...,em, that can be deleted from G in such a way 

that each successive subgraph has property P? Answering that question will be one 

of the focal points of this paper. 

E.     PARTIALLY ORDERED SETS 

A poset, or partially ordered set, (X, R) consists of a set X and a relation R 

which is transitive, reflexive and antisymmetric on X. For each (a, b) e R we write 

a<b. For any a, b e X with a ^b and a ^ b or b ^ a, we say a and b are comparable 

in R. Otherwise, a and b are considered incomparable. If Y C X is a set of pairwise 

comparable elements (i.e., the restriction of R to Y is a total order), then Y is a 

chain. At the other extreme, if the elements in Y C X are pairwise incomparable, 

then Y is an antichain. The height of a poset is the number of elements in a chain of 

maximum size. The length of a poset is one less than its height. A poset's width is 

10 



the number of elements in an antichain of maximum size. 

Given a poset (X, R), if x, y £ X implies x and y are comparable, then X is a 

linearly ordered set, and the poset (X, R) is a linear ordering. Constructing a linear 

ordering from some given poset is topological sorting. If P and Q are posets with a 

common set X, and P C Q, then Q is an extension of P. If Q is a linear ordering 

as well as an extension of P, then Q is called a linear extension of P. It is easily 

shown that, for the set of all linear extensions of P denoted e(P), P = De(P). The 

dimension of a poset (X,R), dim(X, R), is the smallest positive integer t such that 

P = n'-jLj where each Li is a linear extension of P. 

11 
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II. ELIMINATION ORDERINGS 

Both completion and annihilation sequences depend on certain vertex order- 

ing^ that are characteristic of the property P in question. In this chapter we identify 

those orderings and discuss their relationships to certain classes of graphs. 

A.     CHORDAL GRAPHS AND PERFECT ELIMINATION 
ORDERINGS 

Recall that being chordal is a hereditary property and that a chordal graph 

always has at least one simplicial vertex. Utilizing these facts, Fulkerson and Gross 

[Ref.  8] suggested an iterative method to identify chordal graphs.  The idea was to 

find a simplicial vertex and remove it.   Then, since the remaining graph would be 

an induced subgraph of the original and therefore inherit the chordal property, the 

process could be continued until all vertices were removed or a subgraph was. found 

that had no simplicial vertex. If such an ordering was found, then the graph would 

be chordal and the ordering would be a perfect elimination ordering (see Figure 9). 

This is straightforward and can be implemented in 0(|V|3) time. 

G: 

Figure 9. A perfect elimination ordering for G is (5,1,4, 2,3) 

Rose, Tarjan and Lueker [Ref. 9] suggested the lexicographic breadth-first 

search (RTL) algorithm based on Fulkerson and Gross's chordal graph recognition 

procedure. An efficient implementation of the algorithm runs in time 0(|V| + \E\). 

When applied to a chordal graph G, RTL will give a perfect elimination ordering. A 

13 



procedure developed by Tarjan and Yannakakis [Ref. 10], the maximum cardinality 

search (MCS) algorithm, can also test for chordality in 0{\V\ + \E\) and is somewhat 

simpler to implement than RTL. It is interesting to note that each of these algorithms 

can find perfect elimination orderings that the other cannot find. 

B. STRONGLY CHORDAL GRAPHS AND STRONG ELIM- 
INATION ORDERING 

Farber [Ref. 11] defines a strong elimination ordering for a graph G = (V, E) to 

be an elimination ordering such that for each i,j, k and I, if i < j,k < I, vkvt € N[v{], 

and vi e N[vi],then vt  € N[vi\. A graph G is strongly chordal if and only if it 

admits a strong elimination ordering.  If we let i = A;, then it is easily seen that a 

strong elimination ordering must also be a perfect elimination ordering. Färber gives 

an algorithm which takes a graph of unknown class, determines if it has a strong 

elimination ordering, and, if one exists, gives it in polynomial time. 

C. SPLIT GRAPHS AND DEGREE SEQUENCE ORDER- 
INGS 

The degree sequence of a graph is a sequence of the degrees of the vertices in G 

such that the degree sequence (d1,d2,..., dn) implies n-1 > dx > d2 > ... > dn > 0. A 

labeling of the vertices of G such that n - 1 > deg(ui) > deg(u2) > ... > deg(un) > 0 

implies that {vuv2,..., vn) is a degree sequence ordering. Using this concept of a degree 

sequence, Hammer and Simeone [Ref. 12] state the following theorem. 

Theorem II.l (Hammer and Simeone). Let G = (V,E) be a graph with 

degree sequence (du d2,..., dn), and let m = max{i\di > i - 1}. Then G is a split 

graph if and only if 
m n 

J2di= ™(™ ~ 1) +   J2   di- 
*=1 i=m+l 

Furthermore, if this is the case then LO(G) = m. 
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D. THRESHOLD GRAPHS AND THRESHOLD ELIMI- 
NATION ORDERINGS 

Threshold graphs can be characterized by threshold elimination orderings. 

Threshold elimination orderings involve the concept of dominating vertices. For a 

set S C V(G), a vertex x e S is a dominating vertex for S if it is adjacent to every 

other vertex of positive degree in S. A threshold elimination ordering is an ordering 

such that Vk is a dominating vertex for the set of all vertices of positive degree in 

V — {vi\i > k). Odom [Ref. 13] gives the following theorem; the underlying idea can 

be found in Golumbic [Ref. 6]: 

Theorem II.2. A graph G — (V,E) has a threshold elimination ordering if 

and only if G is a threshold graph. 

E. INTERVAL GRAPHS AND INTERVAL ELIMINATION 
ORDERINGS 

Interval graphs can be characterized by an ordering given by Laskar and Jami- 

son [Ref. 14]. Their interval elimination ordering involves the concept of upper and 

lower neighborhoods. For a graph G = (V,E) and some ordering V\,V2, ...vn, define 

the upper neighborhood of Vi by N+[vi] = {vj\i < j and Vj € -/V[UJ]} and the lower 

neighborhood by N~[vi] = {vj\j < i and Vj E N[vi]} (see Figure 10). An interval 

elimination ordering of a graph G is a labeling of the vertices as i>i,i>2, ■■■,vn such 

that, for each 1 < i < n, N~[vi] is an interval in vx,v2, ...,vn. 

1 

G Ordering = (5,1,4, 2,3) 

Figure 10. N~[2] = {5,1,4,2}, N+[2] = {2,3} 
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F. UNIT  INTERVAL  GRAPHS  AND  BICOMPATIBLE 
ORDERINGS 

Laskar and Jamison [Ref. 14] also define the bicompatible ordering which is 

characteristic for unit interval graphs. An ordering vuv2, ...,vn^,vn is bicompati- 

ble if and only if both vx, v2,..., wn_x, vn and vn, un_l,..., v2, Vi are perfect elimination 

orderings. As the following theorem shows, unit interval graphs are related to indif- 

ference graphs. An indifference graph is any graph G = (V, E) such that for some 

real valued function / : V -+ R with S > 0, xy € E if and only if \f(x) - f(y)\ < 5 

for x ^ y. The following theorem reveals some of the implications for graphs having 

bicompatible ordering. 

Theorem II.3 (Laskar and Jamison). For any graph G the following are 

equivalent: 

i) G has a bicompatible ordering. 

ii) G is an interval graph containing no induced A'u. 

Hi) G is a proper interval graph. 

iv) G is a unit interval graph. 

v) G is an indifference graph. 

G. COMPLETION SEQUENCES 

Grone, Johnson, Sä and Wolkowicz [Ref. 15] were the first to publish a work 

defining the concept of a completion class. They show chordal graphs constitute 

a completion class, although they do not use that terminology. Rasmussen [Ref. 

16] shows that several classes of perfect graphs, including chordal, strongly chordal, 

split, threshold, interval and unit interval graphs, are completion classes. He also 

shows that three classes of non-chordal graphs, the first two of which are perfect, 

are completion classes. These are the comparability, permutation, and circular arc 

classes of graphs.   Odom and Rasmussen [Ref.   17] give algorithms which can be 
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used to construct completion sequences for chordal, strongly chordal, split, threshold, 

interval and unit interval graphs. 
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III.        ANNIHILATION SEQUENCES 

In this chapter we show that annihilation sequences exist for chordal, strongly 

chordal, split, threshold, interval and unit interval graphs. The generation of any 

of these annihilation sequences makes use of Algorithm A or Algorithm B, and a 

specific vertex ordering based on an ordering that is characteristic of the class of 

graph in question. In other words, we prove that, given a non-empty graph G that 

is chordal, strongly chordal, split, threshold, interval, or unit interval, there exists an 

annihilation sequence whose first element is G and last element is an empty graph. 

In certain cases we prove an even stronger result, that each graph in the annihilation 

sequence has the same vertex ordering. 

A.     ANNIHILATION ALGORITHMS 

Algorithms A and B are very similar. Each takes a non-empty graph with a 

vertex ordering appropriate to the class of that graph. Both algorithms then sequence 

through a DO loop a total of \E\ times, removing one edge at each pass. Each 

of the algorithms starts at the vertex Vi of positive degree with the smallest label, 

and removes edges incident to it till it has degree zero. The difference between the 

algorithms is the way in which they choose which edge incident to V{ to remove. 

Algorithm A deletes the edge incident to the vertex of the next smallest label number 

while Algorithm B deletes the edge incident to the vertex having greatest label number 

among neighbors of v^. 

1.      Algorithm A 

Input: Graph G = (V, E) of order n > 0 and size rn > 0, with vertices labeled 

according to 9 = {v\, ...,vn). 

Output: In. 

BEGIN 

Go = G; 
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EQ = E\ 

m = \E\- 

FOR i := 1 TO m DO 

A* =min{j|deg(vi) > 0}; 

Si =mm{l\vk.vl e^i_i}; 

-^i = -Ei-i - et-; 

END FOR 

END 

2.      Algorithm B 

Input: Graph G = (V, E) of order n > 0 and size m > 0, with vertices labeled 

as vu...,vn. 

Output: /„. 

BEGIN 

Go = G; 

E0 = E; 

m=\E\; 

FOR i := 1 TO m DO 

ki =mm{j\deg(vj) > 0}; 

Si =max{l\vk.Vi e Ei-i}; 

e» = Ufc.v5i; 

Ei — Ei_i — e.i] 

Gi=(V,Ei); 

END FOR 

END 
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B.     ANNIHILATION SEQUENCES FOR SEVERAL CLASSES 
OF GRAPHS 

Now we examine the results of applying these algorithms to graphs of various 

classes. We show that given an initial input graph that is chordal, strongly chordal, 

split, threshold, interval or unit interval, an annihilation sequence can be generated. 

In each of the above cases except the split and unit interval graphs, a stronger result 

is shown: not only can an annihilation sequence be constructed, but each subgraph 

in the annihilation sequence can be given the same characteristic vertex ordering as 

the initial input graph. 

1.       Chordal Graphs 

Theorem ULI below proves that given a chordal graph G — (V,E) and a 

perfect elimination ordering, Algorithm A generates an annihilation sequence. See 

Figure 11 for an illustration of an annihilation sequence of a chordal graph. 

Theorem III.l. Let G = (V, E) be a chordal graph of order n and size m 

and let the sequence of graphs G0,Gi,...,Gm be defined by Algorithm A. If 6 is a 

perfect elimination ordering for G, then all graphs in the sequence Go,Gi, ...,Gm are 

chordal graphs. 

Proof: We show that not only can an annihilation sequence can be con- 

structed, but also that 9 is a perfect elimination ordering for all graphs in the anni- 

hilation sequence. 

Let G = (V, E) be a chordal graph of order n and size m with perfect elimi- 

nation ordering 9. Define the sequence of graphs G0, G\,..., Gk by Algorithm A. Let 

Gk be the first graph in the sequence which does not have 9 as a perfect elimination 

ordering. 

Consider the perfect elimination ordering 9. Let Vi be the vertex in Gk 

with smallest label which is still incident to some edge. Partition 9 into 9a — 

{vuv2,...,Vi-i} and 0b - {vi,vi+u ...,vn}. 

All vertices in 9a are isolated, so each is a simplicial vertex. The failure of 9 
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Gn 

G. 

G, 

G3 

. ^- , >  ..p 

1 M^ 

2 3 

'—^a 
2 3 

*—H 
2 3 — m m 

Gd 

G, 

G« 

G7 

5 

1 

4 

2 

Figure 11. Annihilation sequence of chordal graph G,9 = (3, 2,4,5,1). 

to be a perfect elimination ordering for Gk must lie in 9b. Modify Gk by removing 

all vertices in 6a. The remaining subgTaph is G9b, the graph induced by the vertices 

in 9b. Sequentially eliminate vertices from G6h until a vertex Vj is found that is not 

simplicial. Note that j > i. 

Consider Nk[vj], the closed neighborhood of the vertex j in the graph Gk. 

Since Vj was simplicial in Gk-h but is not in Gk, there exists vr,vs 6 Nk{vj) such 

that edge vrvs does not exist. Without loss of generality, suppose r < s. By our choice 

of j, we have j <r < s. Since Vj was simplicial in Gjfc_1, vrvs must have existed in 

Gk-i. Since ürws is missing, algorithm A must have removed it. That implies r <j, 
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which is a contradiction. As a result G^ is a chordal graph, 8 is a perfect elimination 

ordering for every graph in the sequence Go, G[,..., Gm and the theorem holds.       D 

2.      Strongly Chordal Graphs 

We prove in Theorem III.2 that given a strongly chordal graph G — (V, E) and 

a strong elimination ordering, Algorithm A generates an annihilation sequence. See 

Figure 12 for an illustration of an annihilation sequence of a strongly chordal graph. 

Gn: 

1 

G4 
.   2 

Gfi: 
.   2 

Go G6: 
.   2 

G7: 
6. .   2 

Figure 12. Annihilation sequence of strongly chordal graph G, 9 = (3,2,4,5,6,1). 
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Theorem III.2. Let G = (V, E) be a strongly chordal graph of order n and 

size m. Let the sequence of graphs GQ, Gu ..., Gm be defined by Algorithm, A. Lf 9 is a 

strong elimination ordering for G, then all graphs in the sequence G0, Gu ..., Gm are 

strongly chordal. 

Proof: We prove that 9 is a strong elimination ordering for all graphs in the 

sequence G0,Gi,..., Gm, and the theorem follows. 

Let G = (V, E) be a strongly chordal graph of order n and size m with strong 

elimination ordering 9. Define the sequence of graphs G0,Gi,...,Gm by Algorithm A. 

Let Gk be the first graph in the sequence which does not have 9 as a strong elimination 

ordering. 

Let Vi be the vertex with smallest label which is still incident to some edge in 

Gk. Partition 9 into 9a = {vuv2,...,v^} and 9b = {Vi,vi+l,...,vn}. 

Each vertex in 9a is isolated and is therefore a simple vertex. The failure to use 

9 as a strong elimination ordering must lie in 9b. Modify G, by removing all vertices 

in 9a. The remaining subgraph is G'k. 

Sequentially eliminate vertices from G'k till a vertex is found which is not 

simple, call it Vj. Note that j > i. Call the remaining graph G£. 

Since Vj was simple in G,
fc_1) but is not in Gk, there exists vr,vs € Nk[VJ] such 

that vr and vs are not pairwise compatible. Let r < s. By Theorem III. 1 we know Vj 

must be simplicial, so vrvs exists. 

Since vr and vs were pairwise compatible in Gfc_1} Algorithm A must have 

removed some edge incident to vr or vs. Call this missing edge vxvy with x < y. 

Edge vxvy must have been incident to v{ or one of the vertices in 9a. We can 

rule out all vertices in 9a since those vertices are isolated and not contained in the 

neighborhood of either vT or vs in G'k'. Therefore, vxvy must be incident to Vi and as 

a result, vx =V{. 

We know Vj > vt. If Vj > u», then vt was found to be simple and was removed 

to form G"k. Since v> is not in the neighborhood of vr or v„ it cannot be incident to 
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vxvy, yet we have already established that Vi = vx. Therefore Vj = Uj. 

Recall Vi — vx is simplicial, vrvs exists and r < s. As a result, vr = vy. 

This implies vxvy — ViVr. If vivr was removed, vr is no longer in Nk"[vj], which is a 

contradiction. As a result Gk is a strongly chordal graph, 9 is a strong elimination 

ordering for each graph in the sequence G0, G\,..., Gm, and the theorem holds.       □ 

3.      Split Graphs 

We prove in Theorem III.3 that given a split graph G = (V, E) and a degree 

sequence ordering, Algorithm A generates an annihilation sequence. Note that the 

algorithm uses the reverse ordering given by the degree sequence- ordering. See Figure 

13 for an illustration of an annihilation sequence of a split graph. 

Theorem III.3. Let G = (V, E) be a split graph of order n and size in 

with degree sequence ordering D. Define the sequence of graphs GQ,G\, ...,Gm by 

Algorithm A using 9, the reverse of D. Every graph in the sequence G0,Gi, ...,Gm 

is a split graph. 

Proof: Let G = (V,E) be a split graph of order n and size in with degree 

sequence D. Define the sequence of graphs G0,G\, ...,Gm by Algorithm A using 9, 

the reverse ordering of D. 

The vertices of a split graph can be partitioned so that V = K U / where K 

is the maximum size clique in G and / is a set of independent vertices in G. Clearly, 

K and / are disjoint sets. The degree of any vertex in / must be less than the degree 

of every vertex in K. As a result, Algorithm A will remove all edges incident to 

vertices in / before removing edges between vertices in K. So if b is the number of 

edges incident to vertices in /, then we know that the first b iterations of Algorithm A 

produce a sequence of graphs whose vertex sets can still be partitioned as V — K U / 

. That implies the first b graphs in the sequence Go, G\,..., Gb, -..Gm are split graphs. 

Once all edges incident to vertices in / have been removed, Algorithm A seeks 

the vertex with minimum label that still has positive degree. All vertices in K have 

the same positive degree, so the algorithm picks vr, the one with the least label. 
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1        2        3 1        2        3 

G o ■ GA 

Gi G« 

5 

1        2        3 12        3 

5 

1        2        3 12        3 

G, 

5        4 

Gfi 

•        • 

5        4 

1        2        3 1        2        3 

Go 

5        4 

G7 

5 

Figure 13. Annihilation sequence of split graph G,6= (3,5,1,4,2). 
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Once the first edge is removed from vr, vr is no longer an element of K but is now an 

element of I. The algorithm sequentially removes each edge incident to vT until it is 

isolated, then as before, selects the vertex in K with the smallest label. The process 

continues with each succeeding Gi, % — 0,1,..., in being a split graph. □ 

4.      Threshold Graphs 

We prove in Theorem III.4 that given a threshold graph G = (V, E) and a 

threshold elimination ordering, Algorithm A generates an annihilation sequence. See 

Figure 14 for an illustration of an annihilation sequence of a threshold graph. 

Theorem III.4. Let G = (V, E) be a threshold graph of order n and size 

rn and let the sequence of graphs Go,G\,...,Gm be defined by Algorithm A. If 9 is a 

threshold elimination ordering for G, then all graphs in the sequence GQ,G\, ...,Gm 

are threshold graphs. 

Proof: We show that an annihilation sequence can be generated and that 

each graph in the annihilation sequence has the same threshold elimination ordering. 

Let G = (V, E) be a threshold graph of order n and size in with threshold 

elimination ordering 9. Define the sequence of graphs G0l G\,..., Gk by Algorithm A. 

Let G/j be the first graph in the sequence which does not have a 9 as a threshold 

elimination ordering. 

Since Gk is not a threshold graph, there is at least one vertex vr in Gk that is 

not a dominating vertex for all vertices with positive degree in Gk — {vi\i > r}. Let 

vr be the first vertex in 9 which is not a dominating vertex. 

Since vr is not a dominating vertex for all vertices with positive degree in 

Gk — {vi\i > r}, there exists a vertex vs £ Gk, s < r, with positive degree such that 

edge vTvs does not exist in Gk, but did exist in Gk-\- 

Since vrvs existed in G^-i, but does not exist in Gk, vrvs was the edge removed 

in the step from Gk to Gk-i- We know vs has positive degree in Gk, so it is incident 

to at least one vertex vx. Since vrvs was removed by Algorithm A, it must be the 

case that r < x.   But if this is the case, then vs does not have positive degree in 
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Gn: G,: 

G, G, 

Go 

•        • 

a 6  • 

G,: 

5 1 5 1 

G7: 

.   . 3 

Figure 14. Annihilation sequence of threshold graph G, 9 = (5,4, 3,1, 2). 
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Gk — {vi\i > r}, which is a contradiction, and vr must be a dominating vertex. As a 

result, Gk is a threshold graph, 9 is a threshold elimination ordering for all graphs in 

the sequence Go,G\,..., Gm, and the theorem holds. . □ 

5.      Interval Graphs 

We prove in Theorem III.5 that given an interval graph G = (V, E) and an 

interval elimination ordering, Algorithm A generates an annihilation sequence. The 

proof shows that not only does an annihilation sequence exist, but that each graph 

in the sequence has the same interval elimination ordering. See Figure 15 for an 

illustration of an annihilation sequence of an interval graph. 

Theorem III.5. Let G = (V, E) be an interval graph of order n and size 

m and let the sequence of graphs Go, G\,..., Gm be defined by Algorithm A. If 9 is 

a interval elimination ordering for G, then all graphs in the sequence GQ,G\, ...,Gm 

are interval graphs. 

Proof: Let G — (V, E) be an interval graph of order n and size m with interval 

elimination ordering 9. Define the sequence of graphs Go, G\,..., Gk by Algorithm A. 

Let Gk be the first graph in the sequence for which 9 is not an interval elim- 

ination ordering. That implies there exists a vertex vy such that for x < y < z, 

vxvz e Ek, but vyvz £ Ek. 

Since Gk-\ is by definition an interval graph, then vyvz E Ek-\. If vyvz G Ek-\ 

and vyvz £ Ek, then vyvz was removed by Algorithm A. This implies y < x which is 

a contradiction. Therefore, Gk is an interval graph with 9 as an interval elimination 

ordering. 

With the same assumptions, a similar argument is easily made for graphs 

with fewer than three vertices. As a result, 9 is an interval elimination ordering for 

all graphs in the sequence Go, G\,..., Gm and the theorem holds. D 
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Go G6 

. 2 

. 3 

Go: 

. 2 

. 3 

Figure 15. Annihilation sequence of interval graph G,9= (5, 3, 2,4,1). 
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6.       Unit Interval Graphs 

Theorem III.6 proves that given a unit interval graph G = (V, E) and a bi- 

compatible ordering, Algorithm B generates an annihilation sequence. Note that in 

this case, the algorithm uses the reverse ordering of the characteristic vertex ordering 

of the graph. See Figure 16 for an illustration of an annihilation sequence of a unit 

interval graph. 

Theorem III.6. Let G = (V, E) be a unit interval graph of order n and size 

m and let the sequence of graphs Go,G\, ...,Gm be defined by Algorithm B. If 9 is a 

bicompatible ordering for G, then all graphs in the sequence Go,Gi,...,Gm are unit 

interval graphs. 

Proof: Let G — (V, E) be a unit interval graph of order n and size m with 

bicompatible ordering 9. Define the sequence of graphs Go, G\,..., Gk by Algorithm B. 

Let the reverse ordering of 9 be denoted by rev(9). Since 9 is a bicompatible ordering, 

we know 9 and rev(#) are perfect elimination orderings. 

By definition, Go is a unit interval graph with bicompatible ordering 9. Con- 

sider the DO loop of Algorithm B being applied k times, resulting in a graph Gk- 

Assume Gk is a unit interval graph. The first r < k vertices have been isolated. 

Consider the graph Gk+\ that results from the next iteration of the DO loop. 

There are two possible outcomes. 

Case 1: deg(iv+i) = 0. Say vr+ivx was removed for some x > r + 1. Then 

vT+\ is isolated and simplicial. Clearly, both 9 and rev(#) remain perfect elimination 

orderings. 

Case 2: deg(iv+i) > 0. Say vr+ivx was removed for some x > r +1. Since vr+1 

was simplicial prior to the removal of ür+1 vx, it remains simplicial after the removal of 

vr+xvx and 9 remains a perfect elimination ordering. In fact, rev(9) remains a perfect 

elimination ordering unless there is a vertex vy such that vr+\,vx G N+[vy] in 9. But 

if that was the case, vT+\Vy would have been removed and not vr+ivx. As a result, 

rev(Ö) remains simplicial. 
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6. I                                  • 2 

G7: 
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5, 3 5. . 3 

Figure 16. Annihilation sequence of unit interval graph G, 6 = (1,2, 3,4,5,6). 
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So, in both case 1 and case 2, when Algorithm B is applied to Gk, the result 

is a unit interval graph with bicompatible ordering 6. It follows by induction that 6 

is a bicompatible ordering for all graphs in the sequence Go, G\,..., Gm, completing the 

proof. □ 
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IV.        PARTIAL ORDERS ON FAMILIES OF 
GRAPHS 

A.     GENERAL OVERVIEW 

Let G^ be the set of all labeled graphs G = (V, E) of order n. If d, G5 e G(n), 

say that Gi < Gj if and only if Ei C Ej. Clearly, (G^n), <) is a poset. Consider the 

case of the poset (G^3\<) (see Figure 17). There are six distinct maximal chains 

in G®, namely {(K3,G0,GS,IZ), (A'3, G0G4,/3), (K^GuG^h), {K3,GuG5,h), 

{K3,G2,G3,h), (K:i,G2,G5,I3)}. The height of (G*3\ <) is 4 and its length is 3. 

Clearly {Go, G\, G2} are incomparable, as are {G3, G4, G5}, giving a width of 3. 

Now consider the slightly less trivial case of the poset (G, <) in G^. The 

height of the poset is 7 and its length is 6. We know that G^ contains one graph 

with six edges, six distinct graphs with five edges, 15 distinct graphs on four edges, 

20 distinct graphs on three edges, 15 distinct graphs on two edges, six distinct graphs 

with a single edge, and one graph with no edges. Take any number of graphs from 

G^; if all the graphs have the same number of edges, then they are all incomparable. 

It is easy to show that the maximum antichain in (G^4\<) consists of the subset 

of G^ containing all graphs with three edges. As a result, the width of the poset 

(G*4\ <) is 20. 

For any poset (G^k\ <), the poset's height is (2)+! and its length is (*). For 

k > 3, the width of the poset is (Ä(
fe
fc)) with h{k) =   ^f- 

B.     P-CHAINS 

Let any chain in (G^, <) that is composed of graphs of property P be called 

a P-chain. Unless otherwise specified, assume that P refers to one of the classes of 

graphs discussed thus far, namely chordal, strongly chordal, split, threshold, interval 

or unit interval graphs. By use of the completion algorithms given by Rasmussen 

and Odom [Ref.   17], we know that given a family of graphs G^n\ if there exists a 
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K-, 

h 
3. 

Figure 17. Poset {G^\<). 

graph G with property P, then there exists a completion sequence of graphs G = 

G0,G!,...,Gk = Kn where Gi < Gi+l. Likewise, by use of annihilation algorithms 

shown in Chapter Three, we know that there exists an annihilation sequence of graphs 

G = G0,G1, ...,Gk = In where d > Gi+1. As a result, any graph G with property 

P lies on at least one P-chain of length Q. Similarly, if G^ contains a graph with 

property P, then at least one maximum length chain in G™ is a P-chain. 

For P-chains in a family of graphs, we make the following observations. First, 

for a given P, there can be more than one P-chain in G^l Nonetheless, all P-chains 

have in common Kn and In. There may be other graphs held in common. Secondly, 
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for a given P, the algorithms discussed here will generate some, but necessarily all of 

the P-chains in G^n\ This can be seen by the highlighted P-chain in Figure 18. 

K3 

h 
3. 

Figure 18. Poset (G(3), <) with perfect elimination ordering (1,2,3). The bold chordal 
P-chain is one that cannot be constructed with the algorithms described here if the 
input graph is GG. 

C.     FINDING "CLOSEST" GRAPHS WITH PROPERTY 
P 

What if G e G(n) does not have property P? If G does not have property P, 

a natural question might be: "what is the closest graph to G that has property P?" 

This is a return to the more traditional graph completion problem mentioned briefly 
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in Chapter One. Finding a "closest graph" raises the question of how to measure how 

close two graphs in G™ are to one another. There are at least three ways to define 

a closest graph. Given G e G^n\ we might define its nearest neighbor in <?(") to be 

any of the following: 

•the subgraph H requiring a minimum or minimal number of edge deletions 
(see Figure 19), 

•the supergraph H requiring a minimum or minimal number of edge additions 
(see Figure 20), 

•the graph H satisfying \E{H)\ = \E(G)\ obtained by the smallest combined 
number of edge additions and deletions (see Figure 21). 

G 

H> 

Ho 
• -• 

Figure 19. Hx and H2 are maximal chordal subgraphs of G. Hx is also a maximum 
chordal subgraph of G. 
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Ho 

Hi 
• * 

f f 

G 

Figure 20.  H-[ and H2 are minimal split supergraphs of G.  Hi is also a minimum 
split supergraph of G. 

G 
• 4 

H 

• < > 
B 

Figure 21. H has the same number of edges as G, but is threshold. 
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V.        DIRECTIONS FOR FURTHER 
RESEARCH 

A. APPLICATIONS 

One specific application of finding the closest graph that has a given property 

would be finding the closest chordal graph to a given non-chordal graph. This could 

be especially valuable since chordal graphs have desirable algorithmic properties. As 

suggested by Dealing, Shier and Warner [Ref. 18], for problems dealing with non- 

chordal graphs, exact computations on a maximal chordal subgraph can yield useful 

approximations to an optimum solution to a problem on an arbitrary graph. 

If we define the closest graph as the supergraph constructed with the minimum 

number of edge additions, we know by Yannakakis [Ref. 19] that finding such a 

minimum chordal supergraph is NP-complete. However, Rose, Tarjan and Lueker 

[Ref. 9] have shown that finding a minimal chordal supergraph, or equivalently finding 

a minimal fill, can be done in 0(|V||.E|) time . If we define the closest graph as being 

the subgraph constructed with the minimum number of edge deletions, we submit 

the computational complexity of finding a such a maximum chordal subgraph is still 

an open question [Ref. 18]. Yet,. Dealing et al [Ref. 18] have shown that finding a 

maximal chordal subgraph with the MAXCHORD algorithm can be done in 0(\E\A) 

where A is the maximum vertex degree in the initial graph. 

B. OPEN QUESTIONS 

We have shown that annihilation sequences exist for chordal, strongly chordal, 

split, threshold interval, and unit interval graphs. We have also given algorithms 

which will generate these annihilation sequences using vertex orderings characteristic 

of the given class of graph. Lastly, we have discussed the existence and structure of 

partial orders on families of graphs. A number of interesting areas remain open to 

further research. 
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• Are there other classes of graphs that have annihilation sequences? If so, can 

the algorithms given in this thesis be used to generate them? If there are algorithms 

which will generate annihilation sequences for other classes of graphs, will they also 

work for the classes of graphs discussed in this thesis? 

• In the construction of a "closest" graph with property P to a given graph 

G, there are many situations which might make it desirable to change certain aspects 

of the graph as little as possible. Is there a heuristic that can be used to keep certain 

aspects of G unchanged, or at least changed as little as possible? If such a heuristic 

exists, does it involve finding an optimum vertex ordering which is related to the 

property P? 

• In the case where a minimal chordal supergraph or a maximal chordal sub- 

graph is used to approximate a given non-chordal graph G, how good is the approxi- 

mation? Specifically, for the coloring problem, is the approximation's error bounded 

by a function of the number of edges added, the number of edges removed, or the 

maximum degree change of a vertex? 
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